CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/11 Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
GCE AS/A LEVEL – October/November 2013		9709	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work
 only. A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
GCE AS/A LEVEL – October/November 2013		9709	11

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \\" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	11

(ii) $576a(x^2) + 2160(x^2) = 0$ $a = -\frac{2160}{576}$ oe (eg $-\frac{15}{4}$) or -3.75 A1 [2] 2 Attempt integration $f(x) = 2(x+6)\frac{1}{2} - \frac{6}{x}(+c)$ $2(3) - \frac{6}{3} + c = 1$ $c = -3$ 3 (i) $DB = 6i + 4j - 3k$ cao $DE = 3i + 2j - 3k$ cao $DE = 3i + 2j - 3k$ cao $DE = 3i + 2j - 3k$ cao $DE = 18 + 8 + 9 = 35$ $DB = \sqrt{61} \times \sqrt{22 \times \cos \theta}$ oe $\theta = 17.2^{\circ}$ (0.300 rad) cao 4 (i) $4(1 - \cos^2 x) + 8\cos x - 7 = 0$ $4c^2 - 8c + 3 = 0 \rightarrow (2\cos x - 1)(2\cos x - 3) = 0$ $x = 60^{\circ}$ or 300° $\theta = 120^{\circ}$ only 5 (ii) $x = (\pm)\sqrt{y} - 1$ $f^{-1}: x \mapsto \sqrt{x-1} \text{ for } x > 1$ (iii) $f(x) = (x^2 + 1)^2 + 1$ $x^2 + 1 = (\pm)13/4$ $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ Alt M1 AlA1 Accept unsimplified terms Sub.x = 3, y = 1. c must be present A1 [21] M1 AlA1 Accept unsimplified terms Sub.x = 3, y = 1. c must be present A1 [22] M1 M1 A1 A1 [23] M1 M1 A1 A1 [24] M1 A1 M1 A1 A1 A1 A1 A1 A1 A1	1	(i)	$64 + 576x + 2160x^2$	B1B1	D 1	Can score in (ii)
$a = \frac{2160}{576} \text{ oe } (\text{eg} - \frac{15}{4}) \text{ or } -3.75$ A1 [2] 2 Attempt integration $f(x) = 2(x+6)\frac{1}{2} - \frac{6}{x}(+c)$ A1A1 Accept unsimplified terms $2(3) - \frac{6}{3} + c = 1$ $c = -3$ M1 Sub.x = 3, y = 1. c must be present A1 [5] 3 (i) DB = $6\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$ cao $DE = 3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ cao $DE = 3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ cao $DE = 3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ cao $0 = 17.2^{\circ} (0.300 \text{ rad})$ cao $0 = 120^{\circ} \text{ only}$ M1 A1A1 (ii) $\frac{1}{2}\theta = 60^{\circ} (\text{or } 300^{\circ})$ $\theta = 120^{\circ} \text{ only}$ M1 A1A1 (iii) $\frac{1}{2}\theta = 60^{\circ} (\text{or } 300^{\circ})$ $\theta = 120^{\circ} \text{ only}$ M1 A1A1 Accept unsimplified terms Sub.x = 3, y = 1. c must be present M1 Use of $x_1x_2 + y_1y_2 + z_1z_2$ Correct method for moduli All connected correctly Use of c.g. BD. DE can score M marks (leads to obtuse angle) M1 Attempt to solve M1 Allow 300° in addition A1 [4] Allow 300° in addition A1 [5] Or $x^4 + 2x^2 - (153/16) = 0$ Or $x^2 = 9/4$, $(-17/4)$ www. Condone $\pm 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = f^{-1}(13/4)$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1	1	()		DIDI		Can score in (ii)
2 Attempt integration $f(x) = 2(x+6)\frac{1}{2} - \frac{6}{x}(+c)$ $2(3) - \frac{6}{3} + c = 1$ $c = -3$ 3 (i) $DB = 6\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$ cao $DE = 3\mathbf{i} + 2\mathbf{j} - 2\mathbf$		(ii)		M1		
2 Attempt integration $f(x) = 2(x+6)\frac{1}{2} - \frac{6}{x}(+c)$ $2(3) - \frac{6}{3} + c = 1$ $c = -3$ 3 (i) $DB = 6\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$ cao $DE = 3\mathbf{i} + 2\mathbf{j} - 2\mathbf$			$a = -\frac{2160}{576}$ oe (eg $-\frac{15}{4}$) or -3.75	A1		
$f(x) = 2(x+6)\frac{1}{2} - \frac{6}{x}(+c)$ $2(3) - \frac{6}{3} + c = 1$ $c = -3$ $3 (i) DB = 6i + 4j - 3k cao$ $DE = 3i + 2j - 3k cao$ $DE = 3i + 2j - 3k cao$ $0E = 3i + 2j - 2i - 2i - 2i$ $0E = 3i + 2j - 2i - 2i$ $0E = 3i + 2j - 2i$ $0E = 3i + 2j - 2i$ $0E = 3i + 2j - 2i$ $0E = 3i + 2i - 2i$ $0E = 3i + 2i$ $0E =$			370 4		[2]	
$ 2(3) - \frac{6}{3} + c = 1 $ $ c = -3 $ $ 2(3) - \frac{6}{3} + c = 1 $ $ c = -3 $ $ (1) DB = 6i + 4j - 3k $ $ DE = 3i + 2j - 3k $ $ Cao $ $ DB = 3i + 2j - 3k $ $ Cao $ $ DB = \sqrt{6} \text{ or } DE = \sqrt{22} $ $ 35 = \sqrt{61 \times \sqrt{22 \times \cos \theta}} \text{ oe } $ $ \theta = 17.2^{\circ} (0.300 \text{ rad}) $ $ Cao $ $ \theta = 17.2^{\circ} (0.300 \text{ rad}) $ $ Cao $ $ A1 $ $ (2) $	2			M1		
$c = -3$ A1 [5] 3 (i) DB = $6i + 4j - 3k$ cao DE = $3i + 2j - 3k$ cao B1 B1 B1 [2] (ii) DB,DE = $18 + 8 + 9 = 35$ $ DB = \sqrt{61} \text{ or } DE = \sqrt{22}$ $35 = \sqrt{61 \times \sqrt{22 \times \cos \theta}} \text{ oe}$ $\theta = 17.2^{\circ} (0.300 \text{ rad}) \text{ cao}$ A1 [4] 4 (i) $4(1 - \cos^2 x) + 8\cos x - 7 = 0$ $4c^2 - 8c + 3 = 0 \rightarrow (2\cos x - 1)(2\cos x - 3) = 0$ $x = 60^{\circ} \text{ or } 300^{\circ}$ $\theta = 120^{\circ} \text{ only}$ A1 [4] (ii) $\frac{1}{2}\theta = 60^{\circ} (\text{or } 300^{\circ})$ $\theta = 120^{\circ} \text{ only}$ B1 (iii) $\frac{1}{2}(1 + \frac{1}{2}) + \frac{1}{2}$ $x^2 + 1 = (\pm 1)(3/4)$ $x = 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ $x = 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ Alt. (iiii) $f(x) = f^{-1}(185/16) = 13/4$ Alt. (iiii) $f(x) = f^{-1}(185/16) = 13/$		f(x)	$=2(x+6)^{\frac{1}{2}}-\frac{6}{x}(+c)$	A1A1		Accept unsimplified terms
$c = -3$ A1 [5] 3 (i) DB = 6i + 4j - 3k cao DE = 3i + 2j - 3k cao B1 B1 B1 [2] (ii) DB,DE = 18 + 8 + 9 = 35 DB = $\sqrt{61}$ or $ DE = \sqrt{22}$ $35 = \sqrt{61 \times \sqrt{22 \times \cos \theta}}$ oe $\theta = 17.2^{\circ}$ (0.300 rad) cao A1 [4] 4 (i) $4(1 - \cos^2 x) + 8\cos x - 7 = 0$ $4c^2 - 8c + 3 = 0 \rightarrow (2\cos x - 1)(2\cos x - 3) = 0$ $x = 60^{\circ}$ or 300° $\theta = 120^{\circ}$ only 5 (i) $x = (\pm)\sqrt{y-1}$ $f^{-1}: x \mapsto \sqrt{x-1}$ for $x \ge 1$ (ii) $ff'(x) = (x^2 + 1)^2 + 1$ $x^2 + 1 = (\pm)13/4$ $x = 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ Alt. (iv) $f(x) = f^{-1}(185/$		2(3	6 + c = 1	M1		Sub $y = 2$, $y = 1$, a must be present
5 3			3			Sub.x = 3, y = 1. C must be present
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>c</i> =	-3	AI	[5]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	(i)	$\mathbf{DR} = 6\mathbf{i} + 4\mathbf{i} - 3\mathbf{k} \qquad \text{cao}$	B1		
(ii) DB.DE = $18 + 8 + 9 = 35$ DB = $\sqrt{61}$ or DE = $\sqrt{22}$ M1 All connected correctly Use of $c.g.$ BD. DE can score M marks (leads to obtuse angle) 4 (i) $4(1-\cos^2 x) + 8\cos x - 7 = 0$ M1 Altempt to solve A1 (ii) $\frac{1}{2}\theta = 60^\circ \text{ (or } 300^\circ)$ M1 Allow 300° in addition A1 [2] 5 (i) $x = (\pm)\sqrt{y-1}$ B1 Or $x^2 + 1 = (\pm)13/4$ Alt. (ii) $f(x) = (x^2 + 1)^2 + 1$ B1 Or $x^2 = 9/4$, $(-17/4)$ www. Condone $\pm 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = 3/2$ Alt. (iii) $f(3/2) = 13/4$ B1 $f(13/4) = 185/16$ B1		(-)				
$ \mathbf{DB} = \sqrt{61} \text{ or } \mathbf{DE} = \sqrt{22}$ $35 = \sqrt{61} \times \sqrt{22} \times \cos \theta \text{ oe}$ $\theta = 17.2^{\circ} (0.300 \text{ rad}) \text{cao}$ $4 (i) 4(1 - \cos^{2} x) + 8 \cos x - 7 = 0$ $4 4(1 - \cos^{2} x) + 8 \cos x - 7 = 0$ $4 4(2 - 8c + 3 = 0 \rightarrow (2 \cos x - 1)(2 \cos x - 3) = 0$ $4 (ii) \frac{1}{2}\theta = 60^{\circ} (\text{or } 300^{\circ})$ $\theta = 120^{\circ} \text{ only}$ $1 1 1 1 1 1 1 1 1 1 $		(ii)	DB.DE = $18 + 8 + 9 = 35$	M1	[2]	Use of $x_1x_2 + y_2y_2 + z_2z_2$
$\theta = 17.2^{\circ} (0.300 \text{ rad}) \qquad \text{cao} \qquad \qquad \textbf{A1} \qquad \text{Use of e.g. BD. DE can score M marks (leads to obtuse angle)}$ $4 \textbf{(i)} 4(1-\cos^2 x) + 8\cos x - 7 = 0 \qquad \qquad \textbf{M1} \qquad \text{Use } c^2 + s^2 = 1$ $4c^2 - 8c + 3 = 0 \rightarrow (2\cos x - 1)(2\cos x - 3) = 0 \qquad \qquad \textbf{M1} \qquad \text{Attempt to solve}$ $x = 60^{\circ} \text{ or } 300^{\circ} \qquad \qquad \textbf{M1} \qquad \text{Allow } 300^{\circ} \text{ in addition}$ $\theta = 120^{\circ} \text{ only} \qquad \qquad \textbf{B1} \qquad \textbf{OR} y^2 = x - 1 (x/y \text{ interchange } 1^{\text{st}})$ $5 \textbf{(i)} x = (\pm)\sqrt{y-1} \qquad \qquad \textbf{B1} \qquad \textbf{Or} x^2 = y - 1 (x/y \text{ interchange } 1^{\text{st}})$ $6 1 $		()	$ \mathbf{DB} = \sqrt{61} \text{ or } \mathbf{DE} = \sqrt{22}$			
[4] marks (leads to obtuse angle) 4 (i) $4(1-\cos^2 x) + 8\cos x - 7 = 0$ M1 Use $c^2 + s^2 = 1$ Attempt to solve			· · · · · · · · · · · · · · · · · · ·			•
4 (i) $4(1-\cos^2 x)+8\cos x-7=0$ M1 Use $c^2+s^2=1$ Attempt to solve $x=60^{\circ} \text{ or } 300^{\circ}$ M1 Allow 300° in addition 5 (i) $x=(\pm)\sqrt{y-1}$ B1 Or $x^2+2x^2-(153/16)=0$ Or $x^2+2x^2-(153/16)=0$ Or $x^2+2x^2-(153/16)=0$ Or $x^2+2x^2-(153/16)=0$ Or $x^2+2x^2-(153/16)=0$ Or $x^2=9/4$, $x=3/2$ Alt. (ii) $x=(\pm)(3/4)$ M1 $x=(\pm)(3/4)$			$\theta = 17.2^{\circ} $ (0.300 rad) cao	A1	[4]	
$4c^{2} - 8c + 3 = 0 \rightarrow (2\cos x - 1)(2\cos x - 3) = 0$ $x = 60^{\circ} \text{ or } 300^{\circ}$ $\theta = 120^{\circ} \text{ only}$ $(ii) \frac{1}{2}\theta = 60^{\circ} (\text{or } 300^{\circ})$ $\theta = 120^{\circ} \text{ only}$ $M1$ $A1$ $[2]$ $M1$ $A1$ $[2]$ $M1$ $A1$ $[2]$ $M1$ $A1$ $[2]$ $M1$ $A1$ $[3]$ $Alt. (ii) ff(x) = (x^{2} + 1)^{2} + 1$ $x^{2} + 1 = (\pm)13/4$ $x = 3/2$ $A1$ $M1$ $A1$ $A1$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A		(0)	4(1 2) 0 7 0	3.71		
$x = 60^{\circ} \text{ or } 300^{\circ}$ (ii) $\frac{1}{2}\theta = 60^{\circ} (\text{ or } 300^{\circ})$ $\theta = 120^{\circ} \text{ only}$ $x = (\pm)\sqrt{y-1}$ $f^{-1}: x \mapsto \sqrt{x-1} \text{ for } x > 1$ (ii) $ff(x) = (x^2 + 1)^2 + 1$ $x^2 + 1 = (\pm)13/4$ $x = 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ $x = 3/2$ Al A11 [4] M1 Allow 300° in addition M1 A1 [2] OR $y^2 = x - 1$ (x/y interchange 1^{st}) Or $x^4 + 2x^2 - (153/16) = 0$ Or $x^2 = 9/4$, $(-17/4)$ www. Condone $\pm 3/2$ Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $f(13/4) = 185/16$ B1 $f(13/4) = 185/16$ B1 $f(13/4) = 185/16$ B1 $x = 3/2$ B1	4	(1)	,			
(ii) $\frac{1}{2}\theta = 60^{\circ} \text{ (or } 300^{\circ})$, , ,			Attempt to solve
$\theta = 120^{\circ} \text{ only}$ $\theta = 120^{\circ} \text{ only}$ $1 $					[4]	
5 (i) $x = (\pm)\sqrt{y-1}$ $f^{-1}: x \mapsto \sqrt{x-1} \text{ for } x > 1$ B1 OR $y^2 = x-1$ (x/y interchange 1^{st}) (ii) $ff(x) = (x^2 + 1)^2 + 1$ $x^2 + 1 = (\pm)13/4$ $x = 3/2$ B1 Or $x^4 + 2x^2 - (153/16) = 0$ Or $x^2 = 9/4, (-17/4)$ www. Condone $\pm 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $f(13/4) = 185/16$ B1		(ii)	/ 2	M1		Allow 300° in addition
5 (i) $x = (\pm)\sqrt{y-1}$ $f^{-1}: x \mapsto \sqrt{x-1}$ for $x > 1$ B1 OR $y^2 = x-1$ (x/y interchange 1^{st}) (ii) $ff(x) = (x^2 + 1)^2 + 1$ $x^2 + 1 = (\pm)13/4$ $x = 3/2$ B1 Or $x^4 + 2x^2 - (153/16) = 0$ Or $x^2 = 9/4$, $(-17/4)$ www. Condone $\pm 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $f(13/4) = 185/16$ B1 $f(13/4) = 185/16$			$\theta = 120^{\circ}$ only	A1	[2]	
$f^{-1}: x \mapsto \sqrt{x-1} \text{ for } x > 1$ $(ii) ff(x) = (x^2 + 1)^2 + 1$ $x^2 + 1 = (\pm)13/4$ $x = 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ $x = f^{-1}(13/4)$ $x = 3/2$ B1B1 $Or x^4 + 2x^2 - (153/16) = 0$ $Or x^2 = 9/4, (-17/4)$ $www. Condone \pm 3/2$ [3] Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ $x = f^{-1}(13/4)$ $x = 3/2$ Alt. (ii) $f(3/2) = 13/4$ $f(13/4) = 185/16$ $B1$ $x = 3/2$ B1					[2]	
(ii) $ff(x) = (x^2 + 1)^2 + 1$ $x^2 + 1 = (\pm)13/4$ $x = 3/2$ B1 Or $x^4 + 2x^2 - (153/16) = 0$ M1 Or $x^2 = 9/4$, $(-17/4)$ www. Condone $\pm 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $f(13/4) = 185/16$ B1	5		· · ·	B 1		OR $y^2 = x - 1$ (x/y interchange 1 st)
(ii) $ff(x) = (x^2 + 1)^2 + 1$ $x^2 + 1 = (\pm)13/4$ $x = 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ $x = f^{-1}(13/4)$ $x = 3/2$ B1 Or $x^4 + 2x^2 - (153/16) = 0$ Or $x^2 = 9/4, (-17/4)$ www. Condone $\pm 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $x = f^{-1}(13/4)$ M1 $x = 3/2$ Alt. (iii) $f(3/2) = 13/4$ B1 $f(13/4) = 185/16$ B1 $x = 3/2$ B1			$f^{-1}: x \mapsto \sqrt{x-1} \text{ for } x > 1$	B1B1	[3]	
$x^2 + 1 = (\pm)13/4$ $x = 3/2$ Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ $x = f^{-1}(13/4)$ $x = 3/2$ M1 Alt. (iii) $f(x) = f^{-1}(185/16) = 13/4$ M1 $f(13/4) = 185/16$ M1		(ii)	$ff(x) = (x^2 + 1)^2 + 1$	B1	اما	Or $x^4 + 2x^2 - (153/16) = 0$
x = 3/2		(11)				, ,
Alt. (ii) $f(x) = f^{-1}(185/16) = 13/4$ M1 Alt. (ii) $f(3/2) = 13/4$ B1 $x = f^{-1}(13/4)$ M1 $f(13/4) = 185/16$ B1 $x = 3/2$ B1						` ,
$x = f^{-1}(13/4)$ M1 $f(13/4) = 185/16$ B1 $x = 3/2$ B1	A 1.	+ (!!\	$f(x) = f^{-1}(195/16) + 12/4$		[3]	A14 (::) f(2/2) = 12/4 B1
x = 3/2 A1 $x = 3/2$ B1	AII	ı. (II)				
						` ′
ı I			·			

Page 5	Mark Scheme	Syllabus	Paper
GCE AS/A LEVEL – October/November 2013		9709	11

6	(i)	$r(2\pi - \alpha) + 2r\alpha + 2r$ $2\pi r + r\alpha + 2r$	B1B1 B1√*	ft for $r\alpha$ instead of $2r\alpha$ or omission $2r$ SC1 for $2r\alpha + 4r$. (Plate = shaded part)
	(ii)	$\frac{1}{2}(2r)^2\alpha + \pi r^2 - \frac{1}{2}r^2\alpha$	B1B1	Either B1 can be scored in (iii)
		$\frac{3r^2\alpha}{2} + \pi r^2$	B1 [3	1
	(iii)	$\pi r^2 - \frac{1}{2}r^2\alpha = 2r^2\alpha$	M1	For equating their 2 parts from (ii)
		$\alpha = \frac{2}{5}\pi$	A1 [2	1
7	(i)	mid-point = $(3, 4)$ Grad. $AB = -\frac{1}{2} \rightarrow \text{grad. of perp.}, = 2$ y - 4 = 2(x - 3) y = 2x - 2	B1 M1 M1 A1	soi For use of $-1/m$ soi ft on <i>their</i> (3, 4) and 2
	(ii)	$q = 2p - 2$ $p^2 + q^2 = 4$ oe $p^2 + (2p - 2)^2 = 4 \rightarrow 5p^2 - 8p = 0$ $\{OR^{1/4}(q + 2)^2 + q^2 = 4 \rightarrow 5q^2 + 4q - 12 = 0\}$	[4 B1 [∱] B1 M1	ft for 1 st eqn. Attempt substn (linear into quadratic) & simplify
		$(0,-2) \text{ and } \left(\frac{8}{5},\frac{6}{5}\right)$	A1A1 [5	1
8	(i)	$A = 2xr + \pi r^{2}$ $2x + 2\pi r = 400 \iff x = 200 - \pi r$	B1 B1	
		$A = 400r - \pi r^2$	M1A1 [4	Subst & simplify to AG (www)
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}r} = 400 - 2\pi r$	B1	Differentiate
		= 0	M1	Set to zero and attempt to find r
		$r = \frac{200}{\pi} \text{ oe}$	A1	
		$x = 0 \implies$ no straight sections AG	A1	
		$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = -2\pi (<0) \text{Max}$	B1 [5	Dep on -2π , or use of other valid reason

Page 6	Mark Scheme	Syllabus	Paper
GCE AS/A LEVEL – October/November 2013		9709	11

9	(a)	$\frac{10}{2}(2a+9d)=400$ oe	B1	$\rightarrow 2a + 9d = 80$
		$\frac{20}{2}(2a+19d)=1400 \text{ OR}$		
		$\frac{10}{2}[2(a+10d)+9d]=1000$	B1	$\rightarrow 2a + 19d = 140 \text{ or } 2a + 29d = 200$
		d = 6 $a = 13$	M1A1A	
	(b)	$\frac{a}{1-r} = 6 \qquad \qquad \frac{2a}{1-r^2} = 7$	B1B1	Tormulae
		$\frac{12(1-r)}{1-r^2} = 7$ or $\frac{1-r^2}{1-r} = \frac{12}{7}$	M1	Substitute or divide
		$r = \frac{5}{7}$ or 0.714	A1	
		$a = \frac{12}{7}$ or 1.71(4)	A1√ ^ħ	Ignore any other solns for r and a
10	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[3(3-2x)^2\right] \times \left[-2\right]$	B1B1	OR $-54 + 72x - 24x^2$ B2,1,0
		$At x = \frac{1}{2}, \frac{dy}{dx} = -24$	M1	
		$y-8 = -24\left(x-\frac{1}{2}\right)$	DM1	
		y = -24x + 20	A1 [5	5]
	(ii)	Area under curve = $\left[\frac{(3-2x)^4}{4}\right] \times \left[-\frac{1}{2}\right]$	B1B1	OR $27x - 27x^2 + 12x^3 - 2x^4$ B2,1,0
		$-2-\left(-\frac{81}{8}\right)$	M1	Limits $0 \rightarrow \frac{1}{2}$ applied to integral with intention of subtraction shown
		Area under tangent = $\int (-24x + 20)$	M1	or area trap = $\frac{1}{2}(20 + 8) \times \frac{1}{2}$
		$= \left -12x^2 + 20x \right \text{ or 7 (from trap)}$	A1	Could be implied
		$\frac{9}{8}$ or 1.125	A1 [6	Dep on both M marks